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Abstract
Heart sound is a valuable biosignal for diagnosis of a large set of cardiac
diseases. Ambient and physiological noise interference is one of the most
usual and highly probable incidents during heart sound acquisition. It tends
to change the morphological characteristics of heart sound that may carry
important information for heart disease diagnosis. In this paper, we propose a
new method applicable in real time to detect ambient and internal body noises
manifested in heart sound during acquisition. The algorithm is developed on
the basis of the periodic nature of heart sounds and physiologically inspired
criteria. A small segment of uncontaminated heart sound exhibiting periodicity
in time as well as in the time-frequency domain is first detected and applied
as a reference signal in discriminating noise from the sound. The proposed
technique has been tested with a database of heart sounds collected from 71
subjects with several types of heart disease inducing several noises during
recording. The achieved average sensitivity and specificity are 95.88% and
97.56%, respectively.

Keywords: noise detection, heart sound processing, periodicity analysis

1. Introduction

Heart sound is a consequence of turbulent blood flow and vibrating cardiovascular structures,
which propagates through the chest. These vibrations typically result from myocardial and
valvular events that are affected by the function, the hemodynamics and electrical activity
of the muscle. The later have a direct impact on the morphological, spectral and timing
characteristics of the main heart sounds (HSs), which have been found to be highly sensitive
and specific for several important diagnosis tasks ranging from heart valve dysfunction (Durand
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and Pibarot 1995, Abbas and Bassam 2009) to the systolic cardiac function (Paiva et al 2009,
Tavel 1967).

Being an acoustic signal, HS acquisition is prone to the interference of several noise
sources that are difficult to avoid, even in well-controlled home or clinical environments.
These noise sources include both external ambient noise sources (e.g. ambient music, noises
induced by bystanders, etc) and internal body noise sources (e.g. coughing, physiological
noises, etc), which interfere with HS in highly complex and unpredictable ways. These
noise sources exhibit a very broad range of spectral characteristics overlapping the typical HS
frequency range and a broad range of durations and loudness, which might alter prominent
diagnosis features in HSs. In this context, detection of inadequate signal acquisition is of
primary importance in order to timely alert and guide the user in solving the signal acquisition
problems and to simplify and enhance the reliability of the diagnosis algorithms. For instance,
in tele-health applications, this has a direct and significant impact on system usability, user
acceptance, long-term adherence and safety. Other non-negligible consequences are on the
impact of the number of interventions by professionals induced by high rates of false positive
diagnosis (Cleland et al 2005), typically associated with tele-monitoring systems. These might
interfere in ordinary clinical workflows and have non-negligible financial and motivational
impacts.

Many researchers have applied electrocardiogram (ECG) as a reference or marker to
find noise contaminations in HSs. In Carvalho et al (2005) an ECG was applied for heart
beat detection. Subsequently, noise presence detection was performed by beat-to-beat power
spectrum cross correlation. A very well-known method for speech enhancement based upon
spectral domain minimum-mean squared error (MMSE) estimation was applied to reduce
noise effects in HS (Paul et al 2006). This method reduces white noise from HS, while S3
and S4 sounds were prevented using ECG gating. The problem of noise detection is explicitly
addressed in Barschdorff et al (1995) and Rajan et al (1998). In Barschdorff et al (1995),
the noise detection process starts by dividing systole into two segments, containing the first
and second HS, respectively. In each segment the variance is computed. All systoles with
variance in either segment significantly above a threshold value are discarded as being noisy.
The threshold value used depends on the smallest variance calculated across all systoles. The
method described in Rajan et al (1998) detects noise by passing the wavelet coefficients of half-
second windows of audio to single layer perceptrons that have been previously trained on clean
and noisy data. Another attempted method for noise cancellation in real time was developed
using an extra acoustic sensor to capture the environmental noise. This additional signal
provides a noise signal for subtracting environmental noise from the contaminated HS signal
(Bai and Lu 2005). Other methods can be found in the literature which involve filtering with
a certain band of frequencies (Brusco and Nazeran 2005). One might look for inspiration for
solving this noise detection and cancelation problem in the well-established speech recognition
literature. In this area of research, it is observed that noise cancelation is typically tackled using
one of two main approaches: exploring the intrinsic characteristics of vocal sound and applying
blind source separation (BSS) techniques. The standard formulation of blind source separation
(e.g. using ICA—independent component analysis—or the phases between different signals)
requires at least as many sensors as signal sources (Comon 1994, Kristjansson et al 2004).
Extensions exist on BSS for speaker separation, which are not bounded by this independent
number of observations constraint. These solutions typically rely on constraints inspired
on the characteristics of voice, such as the regular harmonic structure of voiced phonemes
(Zhang and Zhang 2006), a priori knowledge on sound models (Kristjansson et al 2004,
Potamitis and Ozerov 2008, Jang and Lee 2004) or by assuming that fundamental frequencies
do not overlap (Barry et al 2005). In the context of HS processing these approaches have
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some disadvantages. In order to keep the monitoring system cost effective, practical and user
friendly, it is recommendable to limit the number of signals to be acquired in home settings.
On the other hand, it is observed that practical results achieved by existing BSS techniques are
far from perfect in terms of separation error, i.e. signal separation errors cannot be neglected
and might compromise important diagnosis characteristics in HSs. These separation errors
tend to deteriorate further in single source BSS algorithms. Furthermore, a priori knowledge
typically required by single source BSS techniques is difficult to achieve for the problem
at hand. For instance, HSs do not exhibit a harmonic structure. Another aspect that is not
conveniently tackled by most of these noise detection approaches is their resilience with respect
to the person-specific collection context (site, posture, system characteristics) and specific HS
morphologies.

In most health applications involving HS collection, it suffices to detect noise occurrence
and to discard contaminated sound clips or, if the noise persists, to alert the user in order
to take the necessary actions to eliminate the problem. The reason for this is that, apart
from rare persistent and quasi-periodic noise sources such as heavy lung sounds induced by
respiratory diseases, most noise sources are transient and/or can be easily avoided. This is
the strategy proposed in this paper, i.e. in section 2 an algorithm is proposed for non-cardiac
sound detection during real-time signal recording that is able to detect transient or persistent
non-quasi-periodic noise sources. In the presence of quasi-periodic contaminations such as
respiration noise, the proposed strategy is still useful to obtain an adequate HS recording that
can further be processed to eliminate the respiratory sounds, such as the one proposed by
Tsalaile (2008).

This algorithm has been tested using a database of 115 HS clips that contain representative
noise contaminations that have been acquired from 71 patients with several types of coronary
and heart diseases. In order to thoroughly evaluate the algorithm’s performance on several
types of additive noise sources, a simulation study is also introduced. These results and their
discussion are presented in section 3. The main conclusions of the proposed noise detection
approach are introduced in section 4.

2. Method

Figure 1 depicts the proposed approach for the detection of HS segments with noise
contamination. As can be observed, the method is composed by two main phases, denoted by
phase I and phase II, respectively. The goal of phase I is to find a segment of uncontaminated
heart HS correspondent to one complete heart cycle. This heart cycle will be treated as a
reference sound in phase II of the algorithm.

In phase I, given a window of HS, first the algorithm extracts the heart rate from the
envelope of the HS. This is performed resorting to the autocorrelation function and corresponds
to step (A1) described next. The estimated heart cycle duration is then applied to segment
individual heart cycles, which are then assessed for noise contaminations in the time domain
(see left flow of phase I in figure 1). The later is based on the observation that HS exhibits
quasi-periodic behaviour in the time domain, which is assessed using a similarity measure
between adjacent heart beats (see step A2). This quasi-periodicity behaviour of HS also
manifests itself in the time-frequency domain. Namely, it is observed that the time distribution
of the energy in adjacent frequency bands tends to be (i) highly correlated and (ii) their peaks
tend to be aligned. These conditions are inspected in the processing steps on the right path of
the flow chart of phase I in figure 1 and will be described in steps (B1) and (B2), respectively.
The heart cycles, which meet simultaneously the temporal similarity as well as the spectral
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Figure 1. Flow chart of the proposed approach.

similarity criteria are taken as candidates for the reference HS template. The actual template
is selected among this set of candidates.

In phase II (see the right path of the flow chart in figure 1), each acquired HS window is
checked for similarity against the selected HS reference template. Here two criteria have to be
fulfilled simultaneously: (i) spectral similarity and (ii) temporal energy similarity. The later is
taken into account in order to determine short duration sound spikes, which are not captured
by the spectral similarity criterion.

2.1. Phase I: Reference sound detection

2.1.1. Detection of template candidates. This section introduces the algorithm steps required
to identify candidates for the HS template.

(A) Periodicity in the time domain. The envelopes of HS components are extracted by
applying the Hilbert transform followed by the Gammatone band-pass filter (Deshmukh et al
2005). Next, the autocorrelation function of the envelope is computed. Typically, it will exhibit
pronounced peaks for the main HS components, i.e. the S1, S2 and murmur components. The
autocorrelated values are normalized by the autocorrelation values of a chosen windowing
function, e.g. the Hanning window. Let xe(t) be the envelope of the HS, x(t), and let y(τ) be
its autocorrelated function such that

y(τ) =
∫ ∞
−∞ xe(t)w(t)xe(t − τ)w(t − τ) dt∫ ∞

−∞ w(t)w(t − τ) dt
(1)
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where w(t) is the Hanning window function and T is the duration of a given segment
of HS, which is of the length of 4 s. The variable τ denotes lag in computation of the
autocorrelation that varies from zero to the duration of the analysed signal window. Recently,
Schmidt et al (2010) and Jimne-Gonzlez and James (2010) have used autocorrelation for
periodicity identification in HS segmentation and in the extraction of periodic signals from
noisy abdominal phonograms, respectively. Herein, we also propose to use the autocorrelation
function to identify the heart cycles present in the analysis window. However, this cannot
be done directly by identifying the prominent peaks in y(τ), since the prominence of the
autocorrelation peaks tend to be significantly disturbed in the presence of noise and murmur.
Even in clear HSs, it is observed that usually false prominent peaks are detected. To solve
this, the number of prominent peaks in y(τ) are constrained using the estimated heart rate.
The actual algorithm to select the prominent peaks, which define the heart cycles, is based on
an adaptation of Park’s method (Park 2000), i.e. (i) first the peak with the highest amplitude
is selected; (ii) the algorithm searches the adjacent prominent peak to the left using a window
whose duration equals the heart cycle period; the peak with the highest amplitude inside that
window is selected; (iii) the same procedure described in step (ii) is repeated with a window
to the right; (iv) steps (ii) and (iii) are recursively repeated using the selected prominent peaks
in the previous iteration; (v) the algorithm stops when the number of selected prominent peaks
equals the number of heart cycles inside the analysis window (these are calculated using the
estimated heart rate and the duration of the window). Once all prominent peaks have been
detected, the periodicity is checked using the radial distance (4) between two contiguous heart
cycles. The heart rate estimation and periodic cycles verification procedures are as follows.

(A1) Heart rate estimation. In the absence of an auxiliary signal, such as the ECG, it
is observed that the heart rate can be estimated using the first two singular values of the
rearranged autocorrelation function of the envelopes of the segment of HS under analysis by
extending the algorithm described in Kanjilal and Palit (1994). Let y(τ) be periodic with the
period T ′, i.e. y(τ + T ′) = y(τ). For the typical population at rest, it is observed that T ′

is between 500 and 1200 ms (heart rate is between 120 and 50 beats min−1). Let Y (T ′) be
the data matrix which is constructed by stacking y(τ) samples after every T ′ ms using the
following arrangement:

Y (T ′) =

⎛
⎜⎜⎜⎜⎝

y(0) . . . y(T ′)
y(T ′ + Ts) . . . y(2T ′)

·
·

y((m − 1)T ′ + Ts) . . . y(mT ′)

⎞
⎟⎟⎟⎟⎠ (2)

where m is the number of periodic analysis segments in a given segment of HS, and Ts is
the sampling period i.e. time interval between two consecutive lags in y(τ). If Y (T ′) has
linear dependent rows, then it will have some zero singular values. The singular values are
found by singular value decomposition (SVD) of Y (T ′). Let σ1 � σ2 � σ3 . . . � σm be the
aforementioned singular values. The periodicity can be measured using (3):

ρ = (σ2/σ1)
2. (3)

A value of ρ near zero implies a strong periodicity in the signal. In the process of estimating
the heart rate, Y (T ′) is constructed by varying T ′. The T ′ which minimizes ρ, is the estimated
duration of the heart cycle. The estimated heart rate enables us to find the prominent peaks
in y(τ). Since prominent peaks are directly related to the main components in the HS, which
occur only once per heart cycle (see figure 2), this is used as the prior information to find peaks.
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Figure 2. (a) Heart sound energy, (b) heart sound envelope, and (c) autocorrelation function (y(τ))
of the envelope with peak identification (showing similar heart cycles in terms of vectors y1(t) and
y2(t)).

Namely, inside each processing window, first the largest peak in amplitude is identified. Then
the algorithm determines the second largest peak at a distance not greater than the identified
heart cycle duration from the first peak. This approach is repeated for each newly identified
peak until the total number of prominent peaks found equals the number of complete heart
cycles in the processing window.

(A2) Periodicity check criterion. The set of prominent peaks in y(τ), which has been detected
in the previous step, enables us to find shape similarity between two heart cycles (contiguous
pair of prominent peaks). Since the prominent peak detection algorithm is constrained by
the estimated heart rate, it is observed that each pair of adjacent prominent peaks defines a
complete heart cycle. The similarity is measured by the radial distance between two vectors.
Let yr(τ ) and yr+1(τ ) be the vectors representing the portions of the autocorrelation function
of two consecutive heart beats; then the radial distance is given by

Cos(θ) = 〈yr(τ ), yr+1(τ )〉
|yr(τ )||yr+1(τ )| (4)
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Figure 3. (a) Noisy heart sound, (b) heart sound envelope, and (c) autocorrelation function y(τ)

(showing dissimilar heart cycles).

where 〈·〉 is the inner product operator and | · | represents Euclidean norm of the vectors. In
(4), yr(τ ) and yr+1(τ ), where r is the number of prominent peaks in the analysis window, are
interpolated if they do not have the same length. It is considered that two consecutive heart
cycles exhibit similar shapes if their internal product is greater than 0.8. This threshold was
tuned experimentally. Similar shaped and dissimilar shaped heart cycles in clean and noisy
HSs can be observed in figures 2(c) and 3(c), respectively.

(B) Periodicity in the time-frequency domain. The periodicity check of HSs in the time
domain is not sensitive to the presence of many non-cardiac sounds. For instance, swallowing,
breathing or high pitched voice cannot be identified using the time domain periodicity detection
technique. However, the influence of the noise source in HS periodicity can be observed in the
time-frequency domain. In the proposed method, the spectrogram is adopted to find periodic
patterns in the time-frequency bands. Let S(f , t) be the short-time Fourier transform (STFT)
of x(t), i.e.

S(f, t) =
∫ ∞

−∞
x(η)w(η − t) exp(−2jf πη) dη (5)
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Figure 4. (a) Normal heart sound from a single-tilted disc mechanical prosthetic valve in the mitral
position, (b) spectrogram of (a), and (c) the autocorrelation function ASk(τ ) of spectral power in
15 frequency bands.

where w(η) is the Hanning window function. The windowing function satisfies w(η) = 0
for η > T/2, where T, as mentioned in (A), is the length of the analysed HS segment. In
HSs produced by healthy subjects as well as by individuals who exhibit cardiac diseases, it is
observed that most of the energy of the HS signal is concentrated in the 0–600 Hz frequency
range. In the proposed approach, this frequency range is divided into 15 evenly divided
frequency bands and the spectral energy in each of the bands is taken for periodicity validation.
In figure 4(c) the autocorrelation functions of the energy in each of these 15 frequency bands
are depicted for a normal heart sound. As can be observed, the heart sounds exhibit regular
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patterns in the autocorrelation functions computed for each frequency band. Furthermore,
these regular patterns tend to be linearly dependent between increasing frequency bands.
These linear dependences may monotonically increase or decrease depending on the type of
heart sound. Namely, it is seen that it tends to decrease for heart sounds associated with natural
or bioprosthetic heart valves, while for heart sounds produced by mechanical prosthetic heart
valves it is observed that the linear dependency tends to increase with increasing frequency.
The later is associated with the fact that heart sounds induced by mechanical heart valves
exhibit much higher frequency content compared to natural or bioprosthetic heart valves.
Furthermore, it is also seen that the peaks of the autocorrelation functions in each frequency
band tend to be aligned in time. This is due to the fact that most of the signal’s power is due
to the S1 and the S2 heart sound components which are responsible for the main peaks in the
autocorrelation functions.

The methods for the verification of S1 and S2 periodicity in the time frequency domain
using the 15 frequency bands and the criterion for peaks alignment in these bands are explained
next.

(B1) Pattern detection in frequency bands. In order to extract the periodic patterns from
the spectrogram, autocorrelation of the energy of each frequency band is obtained from (1).
Let ASk(τ ) be the autocorrelated function of the kth, where k = 1, 2, 3 . . . 15, frequency
band in the spectrogram. As can be observed in figure 4(c) the autocorrelated power in 1–15
frequency bands are in regular patterns, where the prominent peaks occur almost aligned
in time. Furthermore, it is seen that the widths of these peaks tend to decrease in higher
frequency bands (see in figure 4(c)). These observations are the basis to build the heuristic
which is applied to verify if the cardiac signal is clean from noise contamination. One of the
observations is the linear dependence of the rows of ASk(τ ). To evaluate linear dependency
contiguous ascending frequency bands are grouped according to (6) and singular values are
computed using the previously described SVD technique:

Sg(m,m+4)(τ ) =

⎛
⎜⎜⎜⎜⎝

ASm(τ)

ASm+1(τ )

·
·

ASm+4(τ )

⎞
⎟⎟⎟⎟⎠ , m = 1, 6, and 11. (6)

In equation (6) Sg(m,m+4) is the matrix formed by grouping the ASk(τ ) rows for each five
contiguous frequency bands. The linear dependence is assessed using (3), since ρ should
be near zero for linear dependent rows. Regarding the monotony assessment of the linear
dependence in increasing or decreasing frequency bands, ρ may also assist in its verification.
Let ρ1, ρ2 and ρ3 be the singular values ratios computed using (3) with the eigenvalues
calculated from matrixes Sg(1,5)(τ ), Sg(6,10)(τ ) and Sg(11,15)(τ ), respectively, then the most
significant observations regarding pure HSs are: ρ1 > ρ2 > ρ3 or ρ1 < ρ2 < ρ3.

In HSs, two distinct situations are observed for (i) native and bio-prosthetic valves and
(ii) for mechanical prosthetic valves. For native valves or bio-prosthetic valves, it is seen that
the main signal energy is concentrated in the lower frequency spectrum. Higher frequency
components appear only at very short time periods (e.g. at the onsets of the aortic valve closing
in S2). Furthermore, the spectral range of HS produced by natural and bioprosthetic valves is
lower compared to the spectral range of HS produced by mechanical prosthetic valves. Hence,
the autocorrelation function is less regular as frequency increases (see figure 5). This leads to
the lower linear dependency of the autocorrelation function as frequency bands increase, i.e.
ρ1 < ρ2 < ρ3. Another situation is found in mechanical prosthetic valves. In this situation,
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Figure 5. (a) Normal heart sound from a native valve, (b) spectrogram of (a), and (c) the
autocorrelation function ASk(τ ) of spectral power in 15 frequency bands.

it is observed that the higher frequency bands have considerably more energy in a broader
frequency range, leading to more pronounced and better defined peaks in time (i.e. peaks of
considerable amplitude and very well localized in time) in high frequency bands. Hence, the
linear dependency increases in this situation, i.e. ρ1 > ρ2 > ρ3. On the contrary, these two
conditions are not met in the presence of noise (see an example in figure 6).

(B2) Peak alignment in the frequency bands. As has already been explained, the main
autocorrelation peaks are due to S1 and S2 HSs. Therefore, they should exhibit alignment in
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Figure 6. (a) Noisy heart sound from a native valve, (b) spectrogram of (a), and (c) autocorrelation
function ASk(τ ) of spectral power in 15 frequency bands (exhibiting aperiodicity).

Sg(m,m+4)(τ ) frequency bands. Otherwise, it is considered that these peaks are due to noise.
In order to check the alignment, all main peaks are found using the previously described peak
detection technique. Afterwards, defining a time tolerance (±5% of the time of the peak in
the first frequency band), the alignment of all peaks is inspected (see an example of aligned
peaks in figure 4(c)). Although these peaks do not follow regular alignment in the presence of
noise, as can be see in figure 6(c). Finally, if 80% of the total peaks are detected aligned and
the monotonicity criterion is met, then the analysis window is assessed as an uncontaminated
HS segment.
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2.1.2. A heart cycle selection as the reference sound. The processing steps described in the
previous subsection enable the identification of uncontaminated HSs. These steps are applied
to identify a window containing clear HSs that will serve to extract a HS reference template.
In order to achieve this goal, first complete heart cycles are identified inside the window using
the autocorrelation function peaks. Second, the heart cycle with the highest average similarity
(radial distance) with respect to all available heart cycles in the window is selected as the
reference heart cycle template.

In the current implementation of the algorithm, a window of 4 s of HS is taken to estimate
the reference HS. This analysis window was found to be sufficient to examine the signal’s
periodicity in the time and in the time-frequency domain. If the signal satisfies the periodicity
conditions introduced in subsection 2.1, a reference HS is extracted using the aforementioned
procedure. Otherwise, the window is shifted 1 s forward and the process is repeated until the
periodicity conditions are met.

2.2. Phase II: non-cardiac sound detection

The previous subsections introduced the preparation phase which is required to detect the
reference HS. Once the reference HS has been defined, a template-matching approach is
applied using the following spectral and temporal features.

2.2.1. Spectral energy. In this step, the spectral root mean square of the HS signal is
calculated, i.e.

Srms(f ) =
√∫ t+Th

t

|S(f, t)|2 dt (7)

where Th is the length of the window of the HS which has the same duration as the reference
sound (duration of the estimated heart cycle). Root mean square of the spectrogram provides
an estimate of the power distribution in the frequency domain. Let Sref

rms(f ) and S test
rms(f ) be the

spectral root mean square for the reference and the test HS signals respectively; then validation
is performed using the following condition:

CorrCoef
(
Sref

rms(f ), S test
rms(f )

)
> th1 (8)

where CorrCoef is the correlation coefficient between two signals, and threshold th1 value is
defined as 0.98. A HS segment is assessed as noisy if CorrCoef goes below th1 in (8). An
example of the effects of (8) in assessing HS contamination by several sources is depicted in
figure 7(b).

2.2.2. Temporal energy. Temporal energy is taken into account in order to determine short
duration sound spikes. It is seen that spectral energy correlation is incapable to capture these
types of noises with the defined correlation criterion in (8), see in figure 7(c). However, it can
be efficiently tackled with the temporal energy of the sounds.

In order to obtain a significant information about the instantaneous amplitude of non-
cardiac sounds of a short duration, it is important to compute the energy for small windows of
the test signal. In our experiments we use window of duration tw = 50 ms. The instantaneous
energy is compared with the maximum energy of the reference sound computed in successive
tw window according to (9). Let xref(t) be the reference signal and x test(t) be the sound under
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Figure 7. (a) Heart sound contaminated with several sources of noises. First 6 s correspond to
reference template search window. The upper part of the graph shows noise classification result.
(b) Spectral energy correlation between heart sound segments and the reference sound. (c) Relative
temporal energy of the heart sound segments.
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Table 1. Induced noise sources.

Category of noises Noise type

Vocal Speech at different pitches
Coughing
Laughing

Physiological Breathing /heavy breathing
Swallowing
Muscle movement

Sensor Rubbing
Movement

Ambient Knocking on the door
Noises induced by moving/falling of small objects
Ambient music
Electric table fan
Phone ringing
Foot steps

assessment. The relative temporal energy (RTE) of the lth segment under analysis, is defined
in (10):

TEref = max
l=1,2...,np

∫ ltw

(l−1)tw

xref(t)2 dt (9)

RTEl =
∫ ltw
(l−1)tw

x test(t)2 dt

TEref (10)

x test(t) =
{

noise ∃l ∈ {1, 2, . . . , np} : RTEl > th2

heart sound otherwise
. (11)

In (10) tw is the window duration applied to compute the signal’s energy, while np = [ Th

tw
],

l = 1, 2, 3, . . . , np, is the total number of sound segments in the test sound. A sound segment
of duration Th is identified as contaminated with spike or impulse sounds of short duration, as
formulated in (11), if its corresponding RTE exceeds the threshold th2, where the threshold is
set to 3-fold TEref.

2.3. Material and data collection

Heart sounds were recorded from patients with prosthetic valve implants (both mechanical and
bioprosthetic) one month after valve implant surgery as well as some from healthy volunteers.
A commercial stethoscope from Meditron has been utilized for HS acquisition. The device
has an excellent signal-to-noise ratio and an extended frequency range (20–20 000 Hz). All
sound samples were digitized with 16-bit resolution and 44.1 kHz sampling rate.

The prepared data set includes 115 HS clips of recording length between 1 and 2 min.
These HS clips have been collected from 71 different subject at rest with the following
biometric characteristics (average±standard deviation): age = 35.26 ± 12.02 years; BMI =
25.11 ± 7.8 kg m−2; male subjects = 64; female subjects = 7. Regarding heart dysfunction,
three subjects exhibited arrhythmia, 31 subjects had an artificial valve implant, andeight
patients exhibited heart murmurs and the rest were healthy subjects.

In order to validate the performance of the algorithm, several types of noises were
intentionally induced during the HS acquisition protocol. According to table 1, in the prepared
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database, non-cardiac sounds were arranged into four classes: vocal sounds, physiological
sounds (breathing, coughing, etc), skin rubbing or abrasion sounds via the stethoscope (sensor
based), and other ambient noises. Contaminated HSs have been applied during the tests of
both phases of the algorithm. The collection of HSs applied for the validation of the second
phase of the method was composed by 4781 uncontaminated HS beats and 1659 contaminated
heart beats distributed as follows: 805 vocal, 241 sensor, 161 physiological and 452 ambient
noise segments. It should be mentioned that noise segments were manually annotated under
the supervision of a clinical expert. Furthermore, noise contaminations induced accidently
during the acquisition protocol were also annotated and included in the test database.

2.4. Performance assessment

The performance of the algorithm is computed in the form of sensitivity (SE) and specificity
(SP) measures, i.e.

SE(%) = TP

TP + FN
; SP(%) = TN

TN + FP
(12)

TP denotes the number of noisy segments correctly detected as noisy segment, TN represents
clean HS segments correctly detected as clean HS segments, FP stands for clean HS segments
incorrectly detected as noisy segment, and FN denotes the number of noisy segments detected
as clean HS segment.

In order to evaluate the robustness of the proposed algorithm, two types of tests have been
performed: in the first test the algorithm has been applied directly to the test database; in the
second test set a simulation study has been performed in order to evaluate its sensitivity with
respect to noise the intensity level. In the first test, noisy segments are divided based upon
their loudness into low, medium and high intensity noise classes. The loudness is defined
herein as the average power of the signal in decibel, i.e. let x(t) be the HS mixed with noise
of duration T; then the loudness can be described in (13):

loudness (dB) = 20 log10

√∫ T

0 x2(t) dt

T
. (13)

In the second test set performed, uncontaminated HSs have been artificially mixed
additively with several types of noises with modulated intensities. Namely, let v(t) be the
noisy sound in the simulation study the algorithm has been applied to u(t) = x(t) + Kv(t),
K = 0, 0.5, 1, 1.5, . . . , 4. For v(t) noise sources of the same categories as the ones described
in section 2.3 have been applied. Furthermore, the signal-to-noise ratio is computed according
to (14):

SNR (dB) = 20 log10

∫ t+T

t
x(t)2 dt∫ t+T

t
K2v(t)2 dt

(14)

2.5. Experimental results

The first phase of the algorithm is related to the estimation of the reference HS. In the applied
database, the proposed methodology was always able to detect a reference HS. On average,
the reference HS was adequately detected during the first 11.4 s (between 4 and 25 s) of each
sound clip. Regarding the processing time complexity of the algorithm, it is observed that the
first phase of the algorithm is significantly more time consuming than the second one. The
later one might be performed in real time in most processing platforms. In test performed
using an implementation in Matlab 7.6 running on Windows XP using a Intel R© CoreTM2Duo
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Table 2. Results of noise detection in terms of sensitivity (SE in %).

Heart sound/ Sensitivity Noise Average

Noise type Valve type HL ML LL sensitivity sensitivity

Vocal Native valve 98.34 94.99 89.04 96.78 96.62
Prosthetic valve 95.45 94.32 100 94.64
Murmur 97.06 96 100 96.74
Arrythmia 100 100 100 100

Sensor Native valve 100 97.95 92 97.16 96.43
Prosthetic valve 100 90 90.91 92.68
Murmur 100 100 50.00 90.91
Arrythmia 100 100 100 100

Physiological Native valve 100 89.66 92.08 92.20 92.94
Prosthetic valve 100 100 91.67 92.87
Murmur 100 100 100 100
Arrythmia NA∗ NA∗ NA∗ NA∗

Ambient Native valve 98.37 92.95 94.45 95.24 94.47
Prosthetic valve 100 93.33 90.00 93.18
Murmur 100 100 100 100
Arrythmia 100 80.00 66.67 77.78

Overall sensitivity 95.88

∗NA = Not available.

Table 3. Results of noise detection in terms of specificity (SP in %), computed based upon false
positive (FP).

Heart sound Specificity

Native valve 97.24
Prosthetic valve 97.61
Murmur 98.17
Arrythmia 99.47
Overall specificity 97.56

processor at 2.53 MHz, it was observed that the first phase took on average 1.23 s per each
4 s window of sound, while in the second phase the algorithm only took on average 0.035 s
per processing window (duration of one heart cycle).

In order to examine the noise detection performance of the algorithm, noisy sound
segments have been divided into three classes based on their degree of loudness, i.e. low
loudness (LL), medium loudness (ML) and high loudness (HL), and into four classes of
noise types based on the origin of the noise source. The considered ranges of loudness in
each class were: HL > −7.5 dB, −14 dB � ML � −7.5, LL < −14 dB. Tables 2 and 3
summarize the achieved detection performance results in terms of sensitivity and specificity in
each of these classes of noises for distinct types of cardiac dysfunctions. As can be observed
in tables 2 and 3, the overall achieved detection sensitivity and specificity are 95.88% and
97.56%, respectively. The achieved detection performance for each of the considered classes
of noise contaminations is relatively homogeneous. Namely, the obtained results show that the
proposed method enables the detection of vocal noises at different pitches with a sensitivity
of 96.62%, irrespective of cardiac dysfunction. Regarding noise contaminations originated
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by sensor movements, i.e. noise contaminations of class sensor induced noise, the method
enables its detection with 96.43% sensitivity. Another highly probable incident during HS
acquisition is contamination by physiological noises. As can be observed, these types of
noises are detected with 92.94% sensitivity. This lower value in sensitivity is directly related
to the fact that physiological noises tend to exhibit similar spectral content as regular heart
sounds and, hence, are more difficult to capture using the spectral similarity feature. Regarding
ambient sound contaminations, the algorithm exhibits 94.47% sensitivity. It should be noted
that these classes of noises reflect the most likely noise contaminations during HS acquisition.
Regarding the performance with respect to the cardiac dysfunction, table 2 suggests that the
algorithm exhibits comparable performance irrespective of heart dysfunction and valve type
(implant or native).

It should be noted that the results reported for arrhythmia are not significant, since only
three subjects in the database exhibited arrhythmia. As one would expect, the noise detection
performance deteriorates as the noise loudness decreases. Using the test database, it is seen
that the algorithm exhibits a deterioration less than 10% in sensitivity when noise intensity
decreases from HL to LL, irrespective of the noise type and cardiac dysfunction. As can be
observed in some of the reported results that sometimes the algorithm seems to perform better
for low loudness noise perturbations than for medium loudness noises. This is mainly due to
the way the noise intensity is assessed (13). The average loudness is not able to adequately
capture the instantaneous intensity level of short duration noises and, therefore, it is observed
that some reasonably loud short duration noises might be classified in the LL class, leading to
the aforementioned effects.

Table 3 summarizes the specificity results achieved by the algorithm for distinct heart
dysfunctions. As can be observed, the obtained specificities tend to exhibit resilience with
respect to the characteristics of the HS source. Given the high values of SP experienced under
the method, a very low number of false positives are expected, i.e. the method tends to exhibit
a very small number of regular HS segments that are classified as noisy segments.

In order to analyse the noise intensity implications in the algorithm’s performance, a
simulation study was setup using an additive noise contamination model with amplitude
modulation. In this study, clean HSs acquired from subjects with native heart valves, prosthetic
heart valves, murmur and arrhythmia were additively mixed with noise contaminations of the
considered noise classes, i.e. voice, sensor, physiological and ambient noises. During this
process, the SNR of the HS segments mixed with noise sources was varied using a linear
gain. The achieved results are reported in figure 8. As can be observed, regardless of the type
of heart dysfunction and noise contamination, the sensitivity of the algorithm declines as the
SNR increases. For negative SNR values, i.e. situations where the noise intensity exceeds the
signal energy, the sensitivity of the method is relatively stable and very high with SE values
near 100%. At 0 dB SNR, a situation where the noise exhibits the same energy as the signal,
it is observed that the performance of the algorithm exhibits a SE over 85%–90%. As one
would expect, since the energy of the noise decreases below the energy of the signal (positive
SNR region) the number of false negatives increases rapidly, leading to a drop in sensitivity.
However, it should be mentioned that even for very low energy noise contaminations, the
algorithm exhibits a significant behaviour. For instance, for 20 dB noise contamination, i.e.
situations where the noise intensity is 10% of the energy of the signal, the simulation results
suggest that the method exhibits SE values higher than 80% for most noise contamination and
HS types. Regarding the performance of the algorithm with respect to the contamination type,
it should be observed that the detection sensitivity tends to be significantly more consistent and
higher for larger ranges of SNR in noise contaminations of ambient noises and vocal noises.
These types of noises tend to exhibit significant content in higher frequencies (e.g. vocal sounds
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Figure 8. Sensitivity for noise detection in varying intensities of noise of the (a) heart sound from
native valves, (b) prosthetic valve, (c) murmur, and (d) arrythmia.

are typically around 2–4 kHz bandwidth) and, therefore, exhibit spectral signatures that are
easier to be captured by the spectral similarity test. Using the additive simulation study, it is
seen that the performance of the algorithm tends to drop more rapidly for physiological and
sensor noise contaminations compared to the other groups of noises. This is related to different
reasons; physiological noise sources tend to exhibit similar spectral content range compared
to HSs; hence, their spectral power signatures are closer to HS spectral power signatures. As
for sensor noise sources, it is observed that these are usually characterized by short durations,
leading to less well-defined spectral signatures. In this type of contaminations the temporal
energy feature plays a central role.

3. Conclusions

Heart sound is a very informative biosignal, since it directly encodes the mechanical activity
of the heart. It has been shown that HS has the potential to be applied in very important
biomedical applications both in hospital as well as in home-care setting. The collection of
an uncontaminated and adequate signal for analysis is probably one of the first challenges
that has to be solved in designing biomedical systems based on this signal. In this paper,
an algorithm has been proposed that enables the detection of HS contaminations by several
sources, irrespective of their spectral and intensity characteristics and interference model.
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The method is based on a template-based strategy composed by two main phases: in a first
phase, the algorithm detects a reference HS with the duration of one heart cycle. This enables
resilience with respect to site of collection, subject and sensor positioning as well as subject
specific morphological characteristics and sound transmission paths. In a second phase, the
detected reference HS template is applied in real time to detect deviations in the HS pattern.
The first phase is based on two periodicity characteristics of uncontaminated HS: HS is a
quasi-stationary signal exhibiting periodicity in time and it is also observed that most of
its energy is concentrated in its S1 and S2 components which manifests itself in adjacent
frequency bands repetitions of the same energy pattern, leading to a periodicity pattern in
frequency bands. These two observations are applied to identify an uncontaminated HS heart
cycle. It should be mentioned that this processing step is the most demanding one from the
computational load perspective. Once this template has been identified, the algorithm proceeds
in detecting non-cardiac sounds by checking the template against the acquired sound. Herein,
two computationally simple features are extracted to analyse the similarity with respect to the
template. Simulation tests using Matlab suggest that this phase of processing can be performed
in real time enabling the algorithm to be used to provide feedback information to the user
regarding the quality of the signal.

The method was exhaustively tested using a database of HSs collected from 71 subjects
with different cardiac dysfunctions and noise contaminations. The database has a total of
157 min of collected HSs with clean HSs as well as HSs that have been contaminated with
some of the most probable noise sources during real life HS acquisitions at several intensity
levels. Using this database, the algorithm achieved a sensitivity of 95.88% and a specificity
of 97.56%. These high sensitivity and specificity together with its real time operation, makes
this algorithm an interesting solution to deploy HS-based biomedical systems, particularly in
pHealth scenarios where feedback information has to be provided in real time to the user in
order to allow us to timely alert and guide the user in solving the signal acquisition problems
and to avoid false positives.
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